Lecture 27 :Alternating Series

The integral test and the comparison test given in previous lectures, apply only to series with positive terms.

A series of the form $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$, where $b_{n}>0$ for all n, is called an alternating series, because the terms alternate between positive and negative values.

Example

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\ldots \\
& \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{2 n+1}=\frac{1}{3}-\frac{2}{5}+\frac{3}{7}-\frac{4}{9}+\ldots
\end{aligned}
$$

We can use the divergence test to show that the second series above diverges, since

$$
\lim _{n \rightarrow \infty}(-1)^{n+1} \frac{n}{2 n+1} \text { does not exist }
$$

We have the following test for such alternating series:
Alternating Series test If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad b_{n}>0
$$

satisfies

$$
\text { (i) } b_{n+1} \leq b_{n} \quad \text { for all } n
$$

$$
\text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
$$

then the series converges.
we see from the graph below that because the values of b_{n} are decreasing, the partial sums of the series cluster about some point in the interval $\left[0, b_{1}\right]$.

A proof is given at the end of the notes.

Notes

- A similar theorem applies to the series $\sum_{i=1}^{\infty}(-1)^{n} b_{n}$.
- Also we really only need $b_{n+1} \leq b_{n}$ for all $n>N$ for some N, since a finite number of terms do not change whether a series converges or not.
- Recall that if we have a differentiable function $f(x)$, with $f(n)=b_{n}$, then we can use its derivative to check if terms are decreasing.

Example Test the following series for convergence

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}, \quad \sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}, \quad \sum_{n=1}^{\infty}(-1)^{n} \frac{2 n^{2}}{n^{2}+1}, \quad \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!} \\
& \sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n^{2}}, \quad \sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right)
\end{aligned}
$$

Note that an alternating series may converge whilst the sum of the absolute values diverges. In particular the alternating harmonic series above converges.

Estimating the Error

Suppose $\sum_{i=1}^{\infty}(-1)^{n-1} b_{n}, b_{n}>0$, converges to s. Recall that we can use the partial sum $s_{n}=b_{1}-$ $b_{2}+\cdots+(-1)^{n-1} b_{n}$ to estimate the sum of the series, s. If the series satisfies the conditions for the Alternating series test, we have the following simple estimate of the size of the error in our approximation $\left|R_{n}\right|=\left|s-s_{n}\right|$.
(R_{n} here stands for the remainder when we subtract the nth partial sum from the sum of the series.)
Alternating Series Estimation Theorem If $s=\sum(-1)^{n-1} b_{n}, b_{n}>0$ is the sum of an alternating series that satisfies

$$
\text { (i) } b_{n+1}<b_{n} \quad \text { for all } n
$$

(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1} .
$$

A proof is included at the end of the notes.
Example Find a partial sum approximation the sum of the series $\sum(-1)^{n} \frac{1}{n}$ where the error of approximation is less than $.01=10^{-2}$.

Proof of the Alternating Series Test

$$
\begin{gathered}
s_{2}=b_{1}-b_{2} \geq 0 \quad \text { since } b_{2}<b_{1} \\
s_{4}=s_{2}+\left(b_{3}-b_{4}\right) \geq s_{2} \quad \text { since } b_{4}<b_{3} \\
\vdots \\
s_{2 n}=s_{2 n-2}+\left(b_{2 n-1}-b_{2 n}\right) \geq s_{2 n-2}
\end{gathered}
$$

Hence the sequence of even partial sums is increasing:

$$
s_{2} \leq s_{4} \leq s_{6} \leq \cdots \leq s_{2 n} \leq \ldots
$$

Also we have

$$
s_{2 n}=b_{1}-\left(b_{2}-b_{3}\right)-\left(b_{4}-b_{5}\right)-\cdots-\left(b_{2 n-2}-b_{2 n-1}\right)-b_{2 n} \leq b_{1} .
$$

Hence the sequence of even partial sums is increasing and bounded and thus converges.. Therefore $\lim _{n \rightarrow \infty} s_{n}=s$ for some s.

This takes care of the even partial sums, now we deal with the odd partial sums.
We have $s_{2 n+1}=s_{2 n}+b_{2 n+1}$, hence $\left.\lim _{n \rightarrow \infty} s_{2 n+1}=\lim _{n \rightarrow \infty}\left(s_{2 n}\right)+\lim _{n \rightarrow \infty} b_{2 n+1}\right)=\lim _{n \rightarrow \infty}\left(s_{2 n}\right)=s$, since by assumption (ii), $\lim _{n \rightarrow \infty} b_{2 n+1}=0$.

Thus the limits of the entire sequence of partial sums is s and the series converges.
Note that in the proof above we see that if $s=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$, with then

$$
s_{2 n} \leq s \leq s_{2 n+1}
$$

because $s_{2 n+1}=s_{2 n}+b_{2 n+1}$ and $s=s_{2 n}+b_{2 n+1}-\left(b_{2 n+2}-b_{2 n+3}\right)-\ldots .<s_{2 n+1}$. Similarly in the proof above we see that

$$
s_{2 n-1} \geq s \geq s_{2 n}
$$

Proof of Alternating Series Estimation Theorem From our note above, we have that the sum of the series, s, lies between any two consecutive sums, and hence

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq\left|s_{n+1}-s_{n}\right|=b_{n+1} .
$$

